School-Based Intervention Idea from


Math Instruction: Support Students Through a Wrap-Around Instruction Plan  (Montague, 1997; Montague, Warger & Morgan, 2000)

When teachers instruct students in more complex math cognitive strategies, they must support struggling learners with a ‘wrap-around’ instructional plan.

That plan incorporates several elements: (a) Assessment of the student’s problem-solving skills. The instructor first verifies that the student has the necessary academic competencies to learn higher-level math content, including reading and writing skills, knowledge of basic math operations, and grasp of required math vocabulary. (b) Explicit instruction. The teacher presents new math content in structured, highly organized lessons. The instructor also uses teaching tools such as Guided Practice (moving students from known material to new concepts through a thoughtful series of teacher questions) and ‘overlearning’ (teaching and practicing a skill with the class to the point at which students develop automatic recall and control of it). (c) Process modeling. The teacher adopts a ‘think aloud’ approach, or process modeling, to verbally reveal his or her cognitive process to the class while using a cognitive strategy to solve a math problem. In turn, students are encouraged to think aloud when applying the same strategy—first as part of a whole-class or cooperative learning group, then independently. The teacher observes students during process modeling to verify that they are correctly applying the cognitive strategy. (d) Performance feedback. Students get regular performance feedback about their level of mastery in learning the cognitive strategy. That feedback can take many forms, including curriculum-based measurement, timely corrective feedback, specific praise and encouragement, grades, and brief teacher conferences. (e) Review of mastered skills or material. Once the student has mastered a cognitive strategy, the teacher structures future class lessons or independent work to give the student periodic opportunities to use and maintain the strategy. The teacher also provides occasional brief ‘booster sessions’, reteaching steps of the cognitive strategy to improve student retention.


Montague, M. (1997). Cognitive strategy instruction in mathematics for students with learning disabilities. Journal of Learning Disabilities, 30, 164-177.

Montague, M., Warger, C., & Morgan, T. H. (2000). Solve it! Strategy instruction to improve mathematical problem solving.. Learning Disabilities Research & Practice, 15, 110-116.

Copyright ©2021 Jim Wright