How Teachers Can Serve as Effective RTI First-Responders

Jim Wright
www.interventioncentral.org
RTI Toolkit: A Practical Guide for Schools

How Elementary Staff Can Serve as Effective RTI First-Responders

Jim Wright, Presenter

2 September 2015
Springs Union Free School District
East Hampton, NY

Workshop Materials: http://www.interventioncentral.org/springsschool
Response to Intervention

Intervention Central
www.interventioncentral.org
Access PPTs and other materials from this workshop at:

http://www.interventioncentral.org/springsschool
In a completely rational society, the best of us would be teachers and the rest of us would have to settle for something less.
-Lee Iacocca
RTI: The Big Picture. What is Response to Intervention? And how can RTI support the Common Core Standards?
Response to Intervention

Essential Elements of RTI (Fairbanks, Sugai, Guardino, & Lathrop, 2007)

1. A “continuum of evidence-based services available to all students” that range from universal to highly individualized & intensive

2. “Decision points to determine if students are performing significantly below the level of their peers in academic and social behavior domains”

3. “Ongoing monitoring of student progress”

4. “Employment of more intensive or different interventions when students do not improve in response" to lesser interventions

5. “Evaluation for special education services if students do not respond to intervention instruction”

Response to Intervention (RTI) as a model to facilitate inclusion for students with learning and behavior problems.

What does RTI look like when applied to an individual student?

A widely accepted method for determining whether a student should be referred to Special Education under RTI is the ‘dual discrepancy model’ (Fuchs, 2003).

- Discrepancy 1: The student is found to be performing academically at a level significantly below that of his or her typical peers (discrepancy in initial skills or performance).

- Discrepancy 2: Despite the implementation of one or more well-designed, well-implemented interventions tailored specifically for the student, he or she fails to ‘close the gap’ with classmates (discrepancy in rate of learning relative to peers).
Response to Intervention

Avg Classroom Academic Performance Level

Discrepancy 1: Skill Gap (Current Performance Level)

Discrepancy 2: Gap in Rate of Learning ('Slope of Improvement')

'Dual-Discrepancy': RTI Model of Learning Disability (Fuchs 2003)
Common Core State Standards Initiative
http://www.corestandards.org/

View the set of Common Core Standards for English Language Arts (including writing) and mathematics being adopted by states across America.

Response to Intervention (RTI)

Response to Intervention (RTI) is a blueprint that schools can implement to proactively identify students who struggle with academic and/or behavioral deficits and provide them with academic and behavioral intervention support. RTI divides school support resources into 3 progressively more intensive levels—or 'tiers'—of intervention. RTI first gained national recognition when written into congressional legislation, the Individuals with Disabilities Education Improvement Act (IDEIA) of 2004.

Because the focus of RTI is on the underperforming learner, schools can use this approach as the 'toolkit' for helping struggling learners to attain the ambitious standards of the Common Core.
Learned Helplessness. What is ‘learned helplessness’ and how can this condition undermine motivation?
Learned Helplessness: The Failure Cycle

Students with a history of school failure are at particular risk of falling into the learned helplessness cycle:

1. The student experiences repeated academic failures...
2. ...which undermine self-confidence in their intellectual abilities.
3. The student begins to doubt that their efforts will overcome their learning difficulties...
4. ...causing that student to reduce efforts toward academic achievement.
5. ...resulting in continued failure...
6. ...and reinforcing the student's belief that they lack the ability to learn.

Learned Helplessness: The Effects

Students who experience a sense of ‘learned helplessness’ feel powerless to improve their academic performance and standing. They can also experience the following negative effects:

1. Reduced motivation to respond in the classroom
2. Lessened ability to associate responding with desirable outcomes
3. Symptoms of depression or anxiety

Activity: Learned Helplessness

Discussion Question:

- Do you find that ‘learned helplessness’ is a problem for students in your classroom?
- If so, what are strategies that help you to motivate these students?
The Power of ‘Mindsets’. What are ‘mindsets’—and how can they help or hinder motivation?
Mindsets: Determining Limits on Potential

Research in cognitive psychology (Dweck, 2006) demonstrates that individuals’ performance as learners is profoundly influenced by

– their perceptions of their intelligence and/or abilities and

– their reinforcing these perceptions through an ongoing monologue as they encounter new challenges.

The habitual ways that people have of thinking about their abilities can be thought of as ‘mindsets’. Mindsets fall into two categories: Fixed vs. growth.

Beliefs About Mindsets: Fixed vs. Growth

<table>
<thead>
<tr>
<th>Fixed Mindset</th>
<th>Growth Mindset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligence (general ability) is fixed. Effort plays a minor role in determining one's level of accomplishment.</td>
<td>Intelligence and other attributes are ‘malleable’–they can increase with effort.</td>
</tr>
<tr>
<td>Thus, setbacks are viewed as a lack of ability and result in the student "giving up or withdrawing effort" (Blackwell, et al., 2015).</td>
<td>This perspective views struggle as a positive– "an opportunity for growth, not a sign that a student is incapable of learning." (Paunesku, et al., 2015).</td>
</tr>
</tbody>
</table>
The ‘Malleability’ of Intelligence

“It is important to recognize that believing intelligence to be malleable does not imply that everyone has exactly the same potential in every domain, or will learn everything with equal ease.

Rather, it means that for any given individual, intellectual ability can always be further developed.”

Mindsets: Fixed vs. Growth

“[Fixed vs. growth] mindsets affect students' achievement by creating different psychological worlds.”

Dr. Carol Dweck

Contrasting Mindsets: Responses to Setbacks

<table>
<thead>
<tr>
<th>Fixed Mindset: The student may:</th>
<th>Growth Mindset: The student will:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• give up</td>
<td>• view setback as an opportunity for learning</td>
</tr>
<tr>
<td>• withdraw effort</td>
<td>• increase effort</td>
</tr>
<tr>
<td>• ‘disidentify’ with challenge subject: e.g., “I don’t like math much anyway.”</td>
<td>• figure out deficiencies in work or study processes and correct them</td>
</tr>
<tr>
<td>• be at greater risk for cheating</td>
<td></td>
</tr>
</tbody>
</table>

Mindsets: Fixed vs. Growth

Does a student’s type of mindset have a significant impact on school performance?

When students are not experiencing significant learning challenges, those with fixed and growth mindsets may do equally well.

However, during times of difficult academic work or dramatic changes in the learning environment (e.g., middle school), growth-mindset students tend to do significantly better than their fixed-mindset peers.

Mindsets: Fixed vs. Growth

What specific strategies can teachers use?

Positive teacher actions to promote a growth mindset in students include:

– affirming through words and deeds the beliefs that everyone has the potential to be a successful learner and that struggles and setbacks are actually positive opportunities for learning; and

– framing challenging tasks as a series of specific steps and helping students to develop concrete plans to complete them.

Mindsets: Fixed vs. Growth

“If you’re a teacher, remember that lowering standards doesn’t raise students’ self-esteem. But neither does raising standards without giving students ways of reaching them.

The growth mindset gives you a way to set high standards and have students reach them. Try presenting topics in a growth framework and giving students process feedback.” p. 212

Strategies to Promote a ‘Growth Mindset’:

Use Process-Oriented Statements

‘Growth mindset’ statements are as varied as the educators, students, and situations they address. However, they tend to:

– lay out a specific process to move forward.

– acknowledge difficulties or struggles that may lay ahead and frame them as opportunities to learn.

– convey optimism through the message that the student can and will move toward success if he or she puts in the effort, follows the recommended process, and makes appropriate use of any ‘help’ resources

Mindsets: Examples of Statements to Avoid...

Fixed Mindset

- Excellent essay...you are a natural born writer!
- You need to work harder. I have seen your grades and know that you are smart enough to get an A in this course.
- It’s OK—not everyone can be good at math.

www.interventioncentral.org
Growth Mindset

• Great work—I see that you followed all of your problem-solving steps.

• Your writing is improving a lot. The extra time you put in and your use of an outline really paid off.

• I can see that you didn’t do as well on this math test as you had hoped. Let’s review strategies to help you to solve your challenge problems.
Strategies to Promote a ‘Growth Mindset’:

Provide ‘Wise’ Feedback

‘Wise feedback’ prevents the student from taking criticism about their work personally. Written or verbal feedback about a student’s academic performance is prefaced with:

– an explicit statement of high standards,
– [optional] a brief description of the feedback, and
– assurance that the instructor fully believes the student capable of attaining those elevated standards.

The actual feedback offered should also be sufficiently rigorous to reflect high standards.

Strategies to Promote a ‘Growth Mindset’:

Provide ‘Wise’ Feedback: Example 1

“Students in this course are working toward high standards of journalism. “

“So I am going to give you specific, detailed editorial feedback about improving this article.”

“I know from your work samples and from talking with previous teachers that you have the skills and drive to use my feedback to rewrite the article and become a stronger journalist.”

Strategies to Promote a ‘Growth Mindset’:
Provide ‘Wise’ Feedback: Example 2

“By grade 7, students are expected to have fully mastered the many math concepts and operations taught in the earlier grades.”

“When you look over this diagnostic math test that you took last week, you will see that I have written a number of comments highlighting where you made errors or failed to show or explain your work.”

“Judging by your test results I can see that you absolutely have the potential to be a strong math student. My comments will point you to where you should put additional effort to ensure success in this course.”

Tools for Teacher as RTI

‘First Responder’: A Mosaic

<table>
<thead>
<tr>
<th></th>
<th>Knowledge of Teacher’s Role in Supporting RTI</th>
<th>Delivery of Strong Core Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Capacity to Create Classroom (Tier 1)</td>
<td>Skill in Defining Student Academic Problems in Clear & Specific Terms</td>
</tr>
<tr>
<td></td>
<td>Academic Intervention Plans</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Ability to Set Intervention Goals and Collect Data to Monitor Classroom Interventions</td>
<td>Access to Research-Supported Tier 1 Intervention Ideas</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Academic Intervention ‘Big Ideas’.

What are key concepts that should guide schools in implementing academic interventions?
Academic Interventions: 7 ‘Big Ideas’

- **Academic problems should be clearly defined.**
 Before a teacher can select interventions to address a student academic problem, the instructor must be able to describe in clear and specific terms just what the student problem is. In fact, the most important step in the entire process of developing an intervention is to be able to describe correctly and specifically the problem that must be fixed (Bergan, 1995).
• Academic problems should be linked to their probable cause. Once an academic problem has been defined, the teacher will want to develop a hypothesis ('educated guess') about what issue is causing that problem.

For example, a student may do poorly on a reading comprehension task because she lacks the necessary comprehension skills, is accurate but not yet fluent in those skills, had once learned those skills but failed to retain them, can perform the skills but has limited endurance, or possesses the skills but does not recognize situations when she should use them (Martens & Witt, 2004).
Response to Intervention

Academic Interventions: 7 ‘Big Ideas’

• **Intervention strategies should be research-based.** When possible, the teacher should include in an intervention plan only those ideas supported by research. At present, there is no consensus on how to define 'research-based' interventions (Odom et al., 2005). However, a sensible rule of thumb to follow is that an intervention idea should be shown as effective in at least one study published in a reputable peer-reviewed research journal before it is used in school intervention plans.
Response to Intervention

Academic Interventions: 7 ‘Big Ideas’

- **Intervention plans should help students to access instruction—but not 'dumb down' instruction.** When putting together classroom intervention plans, instructors can choose from among a wide array of strategies to help the student to achieve academic success. But teachers should take care not cross the line and modify core instruction for struggling general-education students; that is, they should not hold underperforming students to a lesser academic standard than their classmates (Tindal & Fuchs, 1999).
Academic Interventions: 7 ‘Big Ideas’

• *Interventions should be documented in writing.*
 When a teacher commits to develop an academic intervention to support a student, that instructor should always create a written plan to document the intervention prior to implementing it (Burns & Gibbons, 2008).

Writing out intervention plans help teachers to carry them out more consistently and be able to produce the plans when needed as proof that they are providing at-risk students with ongoing assistance.
Interventions should be documented in writing
(cont.). In a well-known article, Miller (1956) cited a number of psychological studies demonstrating that the average person is able to actively manage only about 7 discrete bits of information at one time—which explains why local phone numbers in the United States are 7 digits long. A teacher who is running a whole classroom while trying to informally manage even 1 or 2 individual student interventions in their heads must manage far more than 7 information-bits—and is thus is likely to overlook important details about instruction or intervention simply because of cognitive overload—unless those intervention plans are written down!
Classroom Intervention Planning Sheet: Math Computation Example

This worksheet is designed to help teachers quickly create classroom plans for academic and behavioral interventions. (For a tutorial on how to fill out this sheet, review the accompanying directions.)

<table>
<thead>
<tr>
<th>Case Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>What to Write: Record the important case information, including student, person delivering the intervention, date of plan, start and end dates for the intervention plan, and the total number of instructional weeks that the intervention will run.</td>
</tr>
<tr>
<td>Student: John Samuelson - Gr 4</td>
</tr>
<tr>
<td>Date Intervention is to Start: 8 Oct 2012</td>
</tr>
<tr>
<td>Date Intervention Plan Was Written: 10 October 2012</td>
</tr>
</tbody>
</table>

Description of the Student Problem: Slow math computation speed (computes multiplication facts at 12 correct digits in 2 minutes, when typical gr 4 peers compute at least 24 correct digits).

Intervention

What to Write: Write a brief description of the intervention(s) to be used with the student. TIP: If you have a script for the intervention, you can just write its name here and attach the script to this sheet.

Math Computation Time Drill (Rhymers et al., 2002)

- **Explain time-drills:** are a method to boost students’ rate of responding on arithmetic fact worksheets: (1) The teacher hands out the worksheet. Students are instructed that they will have 3 minutes to work on problems on the sheet. (2) The teacher starts the stopwatch and tells the students to begin working. (3) At the end of the first minute in the 3-minute span, the teacher calls “time,” stops the stopwatch, and tells the students to underline the last number written and to put their pencils in the air. Then students are told to resume work and the teacher resets the stopwatch. (4) This process is repeated at the end of minutes 2 and 3. (5) At the conclusion of the 3 minutes, the teacher collects the student worksheets.

Materials

What to Write: Jot down materials (e.g., flashcards) or resources (e.g., internet-connected computer) needed to carry out the intervention.

Use math worksheet generator on www.interventioncentral.org to create all time-drill and assessment materials.

Training

What to Write: Note what training—If any—is needed to prepare adult(s) or the student to carry out the intervention.

Meet with the student at least once before the intervention to familiarize with the time-drill technique and timed math computation assessments.

Progress-Monitoring

What to Write: Select a method to monitor student progress on the intervention. For the method selected, record what type of data is to be used, enter student baseline (starting-point) information, calculate an intervention outcome goal, and note how frequently you plan to monitor the intervention. **Tip:** Several ideas for classroom data collection appear on the right side of this table.

Type of Data Used to Monitor: Curriculum-based measurement: math computation assessments: 2 minute single-skill probes

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Outcome Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>72 correct digits per 2 minute probe</td>
<td>24 correct digits per 2 minute probe</td>
</tr>
</tbody>
</table>

How often will data be collected? (e.g., daily, every other day, weekly) **WEEKLY**
How To: Create a Written Record of Classroom Interventions

Classroom Intervention Planning Sheet: Math Computation Example

This worksheet is designed to help teachers to quickly create classroom plans for academic and behavioral interventions. (For a tutorial on how to fill out this sheet, review the accompanying directions.)

Case Information

What to Write: Record the important case information, including student, person delivering the intervention, date of plan, start and end dates for the intervention plan, and the total number of instructional weeks that the intervention will run.

<table>
<thead>
<tr>
<th>Student:</th>
<th>Interventionist(s):</th>
<th>Date Intervention Plan Was Written:</th>
<th>Date Intervention is to Start:</th>
<th>Date Intervention is to End:</th>
<th>Total Number of Intervention Weeks:</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Samuelson-Gr 4</td>
<td>Mrs. Kennedy, classroom teacher</td>
<td>10 October 2012</td>
<td>M 8 Oct 2012</td>
<td>F 16 Nov 2012</td>
<td>6 weeks</td>
</tr>
</tbody>
</table>

Description of the Student Problem: Slow math computation speed (computes multiplication facts at 12 correct digits in 2 minutes, when typical gr 4 peers compute at least 24 correct digits).
How To: Create a Written Record of Classroom Interventions

Intervention

What to Write: Write a brief description of the intervention(s) to be used with this student. TIP: If you have a script for this intervention, you can just write its name here and attach the script to this sheet.

Math Computation Time Drill (Rhymer et al., 2002)—See attached description.

Materials

What to Write: Jot down materials (e.g., flashcards) or resources (e.g., Internet-connected computer) needed to carry out this intervention.

Use math worksheet generator on www.interventioncentral.org to create all time-drill and assessment materials.

Training

What to Write: Note what training—if any—is needed to prepare adult(s) and/or the student to carry out the intervention.

Meet with the student at least once before the intervention to familiarize with the time-drill technique and timed math computation assessments.
Progress-Monitoring

What to Write: Select a method to monitor student progress on this intervention. For the method selected, record what type of data is to be used, enter student baseline (starting-point) information, calculate an intervention outcome goal, and note how frequently you plan to monitor the intervention. Tip: Several ideas for classroom data collection appear on the right side of this table.

<table>
<thead>
<tr>
<th>Type of Data Used to Monitor: Curriculum-based measurement: math computation assessments: 2 minute single-skill probes</th>
<th>Ideas for Intervention Progress-Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>12 correct digits per 2 minute probe</td>
</tr>
<tr>
<td>Outcome Goal</td>
<td>24 correct digits per 2 minute probe</td>
</tr>
<tr>
<td>How often will data be collected? (e.g., daily, every other day, weekly):</td>
<td>WEEKLY</td>
</tr>
<tr>
<td></td>
<td>Existing data: grades, homework logs, etc.</td>
</tr>
<tr>
<td></td>
<td>Cumulative mastery log</td>
</tr>
<tr>
<td></td>
<td>Rubric</td>
</tr>
<tr>
<td></td>
<td>Curriculum-based measurement</td>
</tr>
<tr>
<td></td>
<td>Behavior reportcard</td>
</tr>
<tr>
<td></td>
<td>Behavior checklist</td>
</tr>
</tbody>
</table>
How To: Create a Written Record of Classroom Interventions

Classroom Intervention Planning Sheet: Math Computation Example

This worksheet is designed to help teachers quickly create classroom plans for academic and behavioral interventions. (For a tutorial on how to fill out this sheet, review the accompanying directions.)

Case Information

- **What to Write:** Record the important case information, including student, person delivering the intervention, date of plan, start and end dates for the intervention plan, and the total number of instructional weeks that the intervention will run.

<table>
<thead>
<tr>
<th>Student:</th>
<th>John Samuelson-Gr 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention(s):</td>
<td>Mrs. Kennedy, classroom teacher</td>
</tr>
<tr>
<td>Date Intervention Plan Was Written:</td>
<td>10 October 2012</td>
</tr>
<tr>
<td>Date Intervention is to Start:</td>
<td>M 8 Oct 2012</td>
</tr>
<tr>
<td>Date Intervention is to End:</td>
<td>F 16 Nov 2012</td>
</tr>
<tr>
<td>Total Number of Instructional Weeks:</td>
<td>6 weeks</td>
</tr>
</tbody>
</table>

- **Description of the Student Problem:** Slow math computation speed (completes multiplication facts at 12 correct digits in 2 minutes, when typical gr 4 peers compute at least 24 correct digits).

Intervention

- **What to Write:** Write a brief description of the intervention(s) to be used with the student. TIP: If you have a script for the intervention, you can just write its name here and attach the script to this sheet.

 Math Computation Time Drill (Rhymer et al., 2002)

 Exploit time-drills are a method to boost students’ rate of responding on arithmetic-based worksheets: (1) The teacher hands out the worksheet. Students are instructed that they will have 3 minutes to work on problems on the sheet. (2) The teacher starts the stopwatch and tells the students to start work. (3) At the end of the first minute in the 3-minute span, the teacher calls ‘time,’ stops the stopwatch, and tells the students to underline the last number written and to put their pencils in the air. Then students are told to resume work and the teacher resets the stopwatch. (4) This process is repeated at the end of minutes 2 and 3. (5) At the conclusion of the 3 minutes, the teacher collects the student worksheets.

Materials

- **What to Write:** jot down materials (e.g., flashcards) or resources (e.g., Internet-connected computer) needed to carry out the intervention.

Training

- **What to Write:** Note what training—if any—is needed to prepare adult(s) and/or the student to carry out the intervention.

Use math worksheet generator on www.interventioncentral.org to create all time-drill and assessment materials.

Meet with the student at least once before the intervention to familiarize with the time-drill technique and timed math computation assessments.

Progress-Monitoring

- **What to Write:** Select a method to monitor student progress on the intervention. For the method selected, record what type of data is to be used, enter student baseline (starting-point) information, calculate an intervention outcome goal, and note how frequently you plan to monitor the intervention. Tip: Several ideas for classroom data collection appear on the right side of this table.

Type of Data Used to Monitor: Curriculum-based measurement: math computation assessments: 2 minute single-skill probes

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Outcome Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 correct digits per 2 minute probe</td>
<td>24 correct digits per 2 minute probe</td>
</tr>
</tbody>
</table>

- **How often will data be collected?** (e.g., daily, every other day, weekly): WEEKLY
Academic Interventions: 7 ‘Big Ideas’

• **Interventions should be carried out with integrity.**
 The teacher should monitor the integrity of any classroom intervention closely, ensuring that the actual intervention conforms as closely as possible to the guidelines contained in the written intervention plan (Gansle & Noell, 2007) and taking steps when needed to bring the intervention back into alignment with good practices.
• **Goal-setting and progress-monitoring should be a part of all academic interventions.** At their core, academic interventions are intended to improve student performance (Duhon, Mesmer, Atkins, Greguson, & Olinger, 2009). But teachers cannot know with certainty whether a student is actually benefiting from an intervention unless they set specific outcome goals up front and then collect data periodically throughout the intervention to verify that these goals are met (Wright 2007).
RTI & Strong Core Instruction. What are the elements of instruction that benefit struggling learners?
Response to Intervention (RTI) as a model to facilitate inclusion for students with learning and behavior problems.

ACADEMIC RTI

Tier 3: High-Risk Students: 5%
- Diagnostic assessment of academic problems
- RTI Team Meetings
- Customized/intensive academic intervention plan
- Daily progress-monitoring

Tier 2: At-Risk Students: 15%
- Small-group interventions to address off-grade-level academic deficits
- Regular progress-monitoring

Tier 1: Universal: Core Instruction: 80%
- Effective group instruction
- Universal academic screening
- Academic interventions for struggling students

BEHAVIORAL RTI

Tier 3: High-Risk Students: 5%
- Functional Behavioral Assessments (FBAs)
- Behavior Intervention Plans (BIPs)
- Wrap-around RTI Team meetings
- Daily progress-monitoring

Tier 2: At-Risk Students: 15%
- Small-group interventions for emerging behavioral problems
- Regular progress-monitoring

Tier 1: Universal: Classroom Management: 80%
- Clear behavioral expectations
- Effective class-wide management strategies
- Universal behavior screening

How To: Implement Strong Core Instruction

The checklist below summarizes the essential elements of a supported-instruction approach. When preparing lesson plans, instructors can use this resource as a ‘pre-flight’ checklist to make sure that their lessons reach the widest range of diverse learners.

1. Increase Access to Instruction

<table>
<thead>
<tr>
<th>Instructional Element</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructional Match. Lesson content is appropriately matched to students’ abilities (Burns, VanDerHeyden, & Boice, 2008).</td>
<td></td>
</tr>
<tr>
<td>Content Review at Lesson Start. The lesson opens with a brief review of concepts or material that have previously been presented. (Burns, VanDerHeyden, & Boice, 2008, Rosenshine, 2008).</td>
<td></td>
</tr>
<tr>
<td>Preview of Lesson Goal(s). At the start of instruction, the goals of the current day’s lesson are shared (Rosenshine, 2008).</td>
<td></td>
</tr>
<tr>
<td>Chunking of New Material. The teacher breaks new material into small, manageable increments, ‘chunks’, or steps (Rosenshine, 2008).</td>
<td></td>
</tr>
</tbody>
</table>

2. Provided ‘Scaffolding’ Support

<table>
<thead>
<tr>
<th>Instructional Element</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed Explanations & Instructions. Throughout the lesson, the teacher provides adequate explanations and detailed instructions for all concepts and materials being taught (Burns, VanDerHeyden, & Boice, 2008).</td>
<td></td>
</tr>
<tr>
<td>Think-Alouds/Talk-Alouds. When presenting cognitive strategies that cannot be observed directly, the teacher describes those strategies for students. Verbal explanations include ‘talk-alouds’ (e.g., the teacher describes and explains each step of a cognitive strategy) and ‘think-alouds’ (e.g., the teacher applies a cognitive strategy to a particular problem or task and verbalizes the steps in applying the strategy) (Burns, VanDerHeyden, & Boice, 2008, Rosenshine, 2008).</td>
<td></td>
</tr>
<tr>
<td>Work Models. The teacher makes exemplars of academic work (e.g., essays, completed multi word problems) available to students for use as models (Rosenshine, 2008).</td>
<td></td>
</tr>
<tr>
<td>Active Engagement. The teacher ensures that the lesson engages the student in ‘active accurate responding’ (Skinner, Pappas & Davis, 2005) often enough to capture student attention and to optimize learning.</td>
<td></td>
</tr>
</tbody>
</table>
How to: Implement Strong Core Instruction

<table>
<thead>
<tr>
<th>1. Access to Instruction</th>
<th>2. ‘Scaffolding’ Support (Cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ Instructional Match</td>
<td>❑ Group Responding</td>
</tr>
<tr>
<td>❑ Content Review at Lesson Start</td>
<td>❑ High Rate of Student Success</td>
</tr>
<tr>
<td>❑ Preview of Lesson Goal(s)</td>
<td>❑ Brisk Rate of Instruction</td>
</tr>
<tr>
<td>❑ Chunking of New Material</td>
<td>❑ Fix-Up Strategies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. ‘Scaffolding’ Support</th>
<th>3. Timely Performance Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ Detailed Explanations & Instructions</td>
<td>❑ Regular Feedback</td>
</tr>
<tr>
<td>❑ Talk Alouds/Think Alouds</td>
<td>❑ Step-by-Step Checklists</td>
</tr>
<tr>
<td>❑ Work Models</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Opportunities for Review/ Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ Active Engagement</td>
</tr>
<tr>
<td>❑ Collaborative Assignments</td>
</tr>
<tr>
<td>❑ Checks for Understanding</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
How To Implement Strong Core Instruction

Increase Access to Instruction

1. **Instructional Match.** Lesson content is appropriately matched to students' abilities (Burns, VanDerHeyden, & Boice, 2008).

2. **Content Review at Lesson Start.** The lesson opens with a brief review of concepts or material that have previously been presented. (Burns, VanDerHeyden, & Boice, 2008, Rosenshine, 2008).
How To Implement Strong Core Instruction

Increase Access to Instruction

3. **Preview of Lesson Goal(s).** At the start of instruction, the goals of the current day’s lesson are shared (Rosenshine, 2008).

4. **Chunking of New Material.** The teacher breaks new material into small, manageable increments, 'chunks', or steps (Rosenshine, 2008).
How To Implement Strong Core Instruction

Provide ‘Scaffolding’ Support

1. **Detailed Explanations & Instructions.** Throughout the lesson, the teacher provides adequate explanations and detailed instructions for all concepts and materials being taught (Burns, VanDerHeyden, & Boice, 2008).

2. **Talk-Alounds/Think-Alounds.** Verbal explanations are given to explain cognitive strategies: ‘talk-alouds’ (e.g., the teacher describes and explains each step of a cognitive strategy) and ‘think-alouds’ (e.g., the teacher applies a cognitive strategy to a particular problem or task and verbalizes the steps in applying the strategy) (Burns, VanDerHeyden, & Boice, 2008, Rosenshine, 2008).
How To Implement Strong Core Instruction

Provide ‘Scaffolding’ Support

3. **Work Models.** The teacher makes exemplars of academic work (e.g., essays, completed math word problems) available to students for use as models (Rosenshine, 2008).

4. **Active Engagement.** The teacher ensures that the lesson engages the student in ‘active accurate responding’ (Skinner, Pappas & Davis, 2005) often enough to capture student attention and to optimize learning.
How To Implement Strong Core Instruction

Provide ‘Scaffolding’ Support

5. **Collaborative Assignments.** Students have frequent opportunities to work collaboratively—in pairs or groups. (Baker, Gersten, & Lee, 2002; Gettinger & Seibert, 2002).

6. **Checks for Understanding.** The instructor regularly checks for student understanding by posing frequent questions to the group (Rosenshine, 2008).
How To Implement Strong Core Instruction

Provide ‘Scaffolding’ Support

7. **Group Responding.** The teacher ensures full class participation and boosts levels of student attention by having all students respond in various ways (e.g., choral responding, response cards, white boards) to instructor questions (Rosenshine, 2008).

8. **High Rate of Student Success.** The teacher verifies that students are experiencing at least 80% success in the lesson content to shape their learning in the desired direction and to maintain student motivation and engagement (Gettinger & Seibert, 2002).
How To Implement Strong Core Instruction

Provide ‘Scaffolding’ Support

9. Brisk Rate of Instruction. The lesson moves at a brisk rate—sufficient to hold student attention (Carnine, 1976; Gettinger & Seibert, 2002).

10. Fix-Up Strategies. Students are taught fix-up strategies (Rosenshine, 2008) for use during independent work (e.g., for defining unknown words in reading assignments, for solving challenging math word problems).
How To Implement Strong Core Instruction

Give Timely Performance Feedback

1. **Regular Feedback.** The teacher provides timely and regular performance feedback and corrections throughout the lesson as needed to guide student learning (Burns, VanDerHeyden, & Boice).

2. **Step-by-Step Checklists.** For multi-step cognitive strategies, the teacher creates checklists for students to use to self-monitor performance (Rosenshine, 2008).
How To Implement Strong Core Instruction

Provide Opportunities for Review & Practice

1. **Spacing of Practice Throughout Lesson.** The lesson includes practice activities spaced throughout the lesson. (e.g., through teacher demonstration; then group practice with teacher supervision and feedback; then independent, individual student practice) (Burns, VanDerHeyden, & Boice).
How To Implement Strong Core Instruction

Provide Opportunities for Review & Practice

2. **Guided Practice.** When teaching challenging material, the teacher provides immediate corrective feedback to each student response. When the instructor anticipates the possibility of an incorrect response, that teacher forestalls student error through use of cues, prompts, or hints. The teacher also tracks student responding and ensures sufficient success during supervised lessons before having students practice the new skills or knowledge independently (Burns, VanDerHeyden, & Boice, 2008).
How To Implement Strong Core Instruction

Provide Opportunities for Review & Practice

3. **Support for Independent Practice.** The teacher ensures that students have adequate support (e.g., clear and explicit instructions; teacher monitoring) to be successful during independent seatwork practice activities (Rosenshine, 2008).

4. **Distributed Practice.** The teacher reviews previously taught content one or more times over a period of several weeks or months (Pashler et al., 2007; Rosenshine & Stevens, 1995).
Activity: Strong Direct Instruction

1. Review this list of elements of direct instruction.

2. Select 1 or 2 that you find to be a particular challenge to implement in the classroom—and brainstorm with your group about ways to successfully use them.